Pages

A blog about teaching Programming to non-CompSci students by Tim Love (Cambridge University Engineering Department). I do not speak on behalf of the university, the department, or even the IT group I belong to.

Friday, 14 January 2011

Gender

Though the percentage of female students in the university is about 50%, the Engineering department figure is more like 25% (which is better than the UK engineering average of 14%). You'd have thought that once people have gone into Engineering, they might as well do Computing (in for a penny in for a pound) but in our 3rd year software project the figure's below 10% (0% some years). It's not just us of course; at Harvard computer science is the most gender-skewed subject, with women comprising only 13 percent of undergraduate CS majors. The proportion of female CS majors is similar at some of Harvard’s peer institutions - Princeton is 19 percent, and Stanford is 14 percent.

The problem goes back a long way. According to Fran Allen the ratio in computing might be engineering's fault - "Recently I realized what was probably the root cause of [the glass ceiling]: computer science had emerged between 1960 and 1970. And it mostly came out of the engineering schools ... And the engineering schools were mostly all men in that period"

4 issues are commonly mentioned in the documentation. As the authors point out, dealing with these points will improve the popularity of the subject in general as well as increase the female intake.

  • Lifestyle -
    • "A lot of people think it's the games and the nerdiness of sitting in front of a computer all day [that makes computer science unappealing to women]. It's going to be interesting how these new social networks online will have an effect" (Fran Allen)
    • "[women] attach their interest in computing to other arenas, to a social context that's more people-oriented. We refer to this as computing with a purpose as opposed to programming for programming's sake or a totally technology-centric focus. But the curriculum and culture does not acknowledge this interdisciplinary, contextual orientation toward computer science." (Jane Margolis and Allan Fisher, "Unlocking the Clubhouse: Women in Computing")
    At engineering, we might not be too badly off in this respect: computing is only a means to an end, and we have students working on Design, Medical software, Green Technology, 3rd World technology, Teaching Aids, etc.
  • Career Options - It is sometimes thought that computing jobs reward those prepared to obsessionally work long hours. There are many 9-5 computing jobs nowadays, and many uses of computing in the humanities. I've been involved with computing projects about garden design, poetry, etc.
  • Role Models - our head of department is female. The IT group I'm in has about about 20% females. It's difficult getting female staff/p-grads involved with introductory computing - there aren't many of them in the first place, and they don't want to spend their teaching time on introductory courses as role models.
  • Pre-university qualifications/experience -
    • "We also found because of early socialization in schools and at home, and a sort of early claiming of the computer as a boy's toy, that girls who wanted to major in computer science and got into one of the top computer science departments in the country actually came in with less hands-on experience. Although there was absolutely no difference in ability, there was a difference in experience, which then led to a difference in confidence during the program." ("Unlocking the Clubhouse: Women in Computing", Jane Margolis and Allan Fisher)
    The choices made at school can be restrictive. At our department there are people in touch with developments in pre-univ education, and we run OutReach courses, bringing schoolchildren into the department. Elsewhere, girl-only summer schools are run.

Some other places have attempted remedies.

  • Several CS professors [at Harvard] indicated that encouraging more women to study the subject was among their top priorities for the future. "It’s something that we talk about a lot," said Associate Dean for Computer Science and Engineering J. Gregory Morrisett. "We are coordinating with a bunch of departments around the world and are trying a lot of different things in the hopes that we will uncover some of the issues and correct for them." (from The Crimson Harvard)
  • They improved the situation at Carnegie-Mellon -
    • "There's been an attempt to teach computing in a more interdisciplinary way. Also, the university accounted for the different levels of experience - one of our findings being that women came in with different levels of experience, but there was no difference in ability."
    • "A new set of courses was introduced in the first year, allowing everyone to self-select where they wanted to be according to their experience, and then everyone would be at a similar level by the second year. That means you wouldn't have students with little experience sitting next to someone that's been hacking their whole life and then get really discouraged."

See Also

  • https://quillette.com/2018/06/19/why-women-dont-code/
  • "A deficit of women in computer science: a student's perspective" (JCSC 26,3 (January 2011), by Anna Mikesell and George Rinard)
  • Women in Computer Sciences: Closing the Gender Gap in Higher Education (Carnegie Mellon)
  • Women in computing (Wikipedia)
  • New Image for Computing ("while 67% of all boys rated computer science as a “very good” or “good” career choice, only 9% of girls rated it “very good” and 17% as “good.” Digging down deeper, it is fascinating to note that there’s a gender gap between boys and girls when it comes to feeling that “being passionate about your job” is “extremely important” (F: 78%, M: 64%), “earning a high salary” is “extremely important” (F: 39%, M: 50%), and “having the power to do good and doing work that makes a difference” is “extremely important” (F: 56%, M: 47%)").
  • "Women and Gaming: The Sims and 21st Century Learning", Hayes et al. ("most [females] chose what are known as “casual” games, such as Solitaire, Tetris and Bejeweled. ... Unfortunately, casual games lack a critical capability that may give boys a leg up – modding. Modding allows users to modify or create part of the game. For example, players can create new maps or scenarios that others can use. The process of modding helps gamers develop advanced computing skills. Serious gamers and modders also form communities that provide informal learning and a peer network. It’s like the old boys’ network, only the venue is games rather than golf courses. ... Over the course of Hayes’ research, games have opened up more to women. And products such as the Wii are radically transforming the demographics of gameplay by bringing gaming to people who would never have pursued traditional computer games. Hayes suspects that the increase in games on cell phones and PDAs will change the gaming landscape as well.")
  • "A note on performance and satisfaction of female students studying computer science" by Ivanovic Mirjana et al (ITALICS Volume 9 Issue 1 February 2010) - "Numerous research results have shown a significant lack of female students enrolled in Computer Science studies at the universities worldwide ... Moreover, it is a recognized fact that those few women who stay in the field discontinue their studies more often than their male colleagues."
  • What Has Driven Women Out of Computer Science?
  • "Why are women underrepresented in Computer Science? Gender differences in stereotypes, self-efficacy, values, and interests and predictors of future CS course-taking and grades" by Sylvia Beyer (Computer Science Education Volume 24, Issue 2-3, 2014, p.153-192)
  • "Women in maths-intensive fields move from undergraduate to graduate school to tenure-track professorships at rates comparable to men. In contrast, in [life sciences, psychology, and and social sciences] they tend to drop out of the pipeline more often" - see http://tinyurl.com/q2ze3bg (2014) - Diane F. Halpern (Minerva Schools at the Keck Graduate Institute) notes that "the report paints a complex picture of the contributors to gender imbalances within the sciences, a picture that challenges traditional beliefs regarding the role of discrimination in perpetuating the gender gap."
  • High Emotional Intelligence in women is linked to higher truancy, drugs and violence. In men the opposite is true (from the Journal of Forensic Psychiatry and Psychology)
  • Autistic-spectrum shy girls are less likely to be diagnosed (and helped) than similar boys
  • the proportion of undergraduate computer-science degrees awarded to women in the US has declined from 37 per cent in 1984 to 18 per cent in 2010 ... Meanwhile, in India, the trend has gone in the other direction ... in 2003, 32 percent of the Bachelor of Engineering degrees in computer science and 55 per cent of the Bachelor of Science degrees in computer science were awarded to women ("Geek Sublime" by Vikram Chandra (Faber and Faber, 2014, p.80)
  • research in countries as varied as Iran, Hong Kong, Mauritius, Taiwan, and Malaysia has yielded results consistent who those found in studies in India, showing that there is nothing about the field of computing that makes it inherently male. Varma's conclusion is blunt: 'The gender imbalance in the United States seems to be specific to the country; is not a universal phenomenon ("Geek Sublime" by Vikram Chandra (Faber and Faber, 2014, p.83)

No comments:

Post a Comment